An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing.

نویسندگان

  • Justin B Hackett
  • Xiaowen Shi
  • Amy T Kobylarz
  • Meriah K Lucas
  • Ryan L Wessendorf
  • Kevin M Hines
  • Stephane Bentolila
  • Maureen R Hanson
  • Yan Lu
چکیده

Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the orrm6 editing defects and mutant phenotype. Unlike ORRM1, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRM1 to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate psbF-C77 editing, like the essential site-specific pentatricopeptide repeat protein LOW PSII ACCUMULATION66. Stable expression in the orrm6 mutants of a nucleus-encoded, plastid-targeted PsbF protein from a psbF gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering.

Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial edit...

متن کامل

Elucidation of the RNA Recognition Code for Pentatricopeptide Repeat Proteins Involved in Organelle RNA Editing in Plants

Pentatricopeptide repeat (PPR) proteins are eukaryotic RNA-binding proteins that are commonly found in plants. Organelle transcript processing and stability are mediated by PPR proteins in a gene-specific manner through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs. However, the sequence-specific RNA recognition mechanism of the PPR protein remains lar...

متن کامل

Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis

Post-transcriptional C-to-U RNA editing occurs at specific sites in plastid and plant mitochondrial transcripts. Members of the Arabidopsis pentatricopeptide repeat (PPR) motif-containing protein family and RNA-editing factor Interacting Protein (RIP, also known as MORF) family have been characterized as essential components of the RNA editing apparatus. Recent studies reveal that several organ...

متن کامل

Extraplastidic site-specific factors mediate RNA editing in chloroplasts.

Single nucleotides in higher plant organellar mRNAs are subject to post-transcriptional alterations by RNA editing, typically resulting in changes of the encoded protein sequence. Although some information has been acquired on the general features of the editing processes in both plastids and plant mitochondria, the mechanisms and factors involved in the selective recognition of the nucleotide ...

متن کامل

RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing.

Transcripts of plant organelle genes are modified by cytidine-to-uridine (C-to-U) RNA editing, often changing the encoded amino acid predicted from the DNA sequence. Members of the PLS subclass of the pentatricopeptide repeat (PPR) motif-containing family are site-specific recognition factors for either chloroplast or mitochondrial C targets of editing. However, other than PPR proteins and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 173 4  شماره 

صفحات  -

تاریخ انتشار 2017